Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542460

RESUMO

Malignant hyperthermia (MH) is a pharmacogenetic condition of skeletal muscle that manifests in hypermetabolic responses upon exposure to volatile anaesthetics. This condition is caused primarily by pathogenic variants in the calcium-release channel RYR1, which disrupts calcium signalling in skeletal muscle. However, our understanding of MH genetics is incomplete, with no variant identified in a significant number of cases and considerable phenotype diversity. In this study, we applied a transcriptomic approach to investigate the genome-wide gene expression in MH-susceptible cases using muscle biopsies taken for diagnostic testing. Baseline comparisons between muscle from MH-susceptible individuals (MHS, n = 8) and non-susceptible controls (MHN, n = 4) identified 822 differentially expressed genes (203 upregulated and 619 downregulated) with significant enrichment in genes associated with oxidative phosphorylation (OXPHOS) and fatty acid metabolism. Investigations of 10 OXPHOS target genes in a larger cohort (MHN: n = 36; MHS: n = 36) validated the reduced expression of ATP5MD and COQ6 in MHS samples, but the remaining 8 selected were not statistically significant. Further analysis also identified evidence of a sex-linked effect in SDHB and UQCC3 expression, and a difference in ATP5MD expression across individuals with MH sub-phenotypes (trigger from in vitro halothane exposure only, MHSh (n = 4); trigger to both in vitro halothane and caffeine exposure, MHShc (n = 4)). Our data support a link between MH-susceptibility and dysregulated gene expression associated with mitochondrial bioenergetics, which we speculate plays a role in the phenotypic variability observed within MH.


Assuntos
Hipertermia Maligna , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Halotano/farmacologia , Halotano/metabolismo , Fosforilação Oxidativa , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Suscetibilidade a Doenças/metabolismo , Biópsia , Expressão Gênica , Contração Muscular , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Transporte/metabolismo
2.
Front Immunol ; 15: 1333967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482010

RESUMO

Introduction: The incidence of the autoimmune disease, type 1 diabetes (T1D), has been increasing worldwide and recent studies have shown that the gut microbiota are associated with modulating susceptibility to T1D. Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and is widely expressed on many cells, including dendritic cells (DCs), which are potent antigen-presenting cells (APCs). TLR5 modulates susceptibility to obesity and alters metabolism through gut microbiota; however, little is known about the role TLR5 plays in autoimmunity, especially in T1D. Methods: To fill this knowledge gap, we generated a TLR5-deficient non-obese diabetic (NOD) mouse, an animal model of human T1D, for study. Results: We found that TLR5-deficiency led to a reduction in CD11c+ DC development in utero, prior to microbial colonization, which was maintained into adulthood. This was associated with a bias in the DC populations expressing CD103, with or without CD8α co-expression, and hyper-secretion of different cytokines, both in vitro (after stimulation) and directly ex vivo. We also found that TLR5-deficient DCs were able to promote polyclonal and islet antigen-specific CD4+ T cell proliferation and proinflammatory cytokine secretion. Interestingly, only older TLR5-deficient NOD mice had a greater risk of developing spontaneous T1D compared to wild-type mice. Discussion: In summary, our data show that TLR5 modulates DC development and enhances cytokine secretion and diabetogenic CD4+ T cell responses. Further investigation into the role of TLR5 in DC development and autoimmune diabetes may give additional insights into the pathogenesis of Type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Humanos , Camundongos , Citocinas/metabolismo , Células Dendríticas , Suscetibilidade a Doenças/metabolismo , Camundongos Endogâmicos NOD , Receptor 5 Toll-Like/metabolismo
3.
Methods Mol Biol ; 2756: 317-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427302

RESUMO

Meloidogyne species, as infective second-stage juveniles (J2s) larvae, are parasites able to attack host of relevant agronomic interest such as tomato plants. The identification of gene expression markers, useful to investigate the levels of root-knot nematode infection in the roots, is a fundamental tool in plant-pathogen interaction. The laboratory methods for analyzing the differential expression of pathogenesis-related (PR) genes constitute powerful tools for detecting the induced systemic acquired resistance defense response to M. incognita in infected plants and can be extended to all pathogen infection markers to obtain an early and sustainable control.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Solanum lycopersicum/genética , Tylenchoidea/genética , Raízes de Plantas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Suscetibilidade a Doenças/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473993

RESUMO

Amoxicillin is commonly used in clinical settings to target bacterial infection and is frequently prescribed during pregnancy. Investigations into its developmental toxicity and effects on disease susceptibility are not comprehensive. Our present study examined the effects of embryonic amoxicillin exposure on liver development and function, especially the effects on susceptibility to non-alcoholic fatty liver disease (NAFLD) using zebrafish as an animal model. We discovered that embryonic amoxicillin exposure did not compromise liver development, nor did it induce liver toxicity. However, co-treatment of amoxicillin and clavulanic acid diminished BESP expression, caused bile stasis and induced liver toxicity. Embryonic amoxicillin exposure resulted in elevated expression of lipid synthesis genes and exacerbated hepatic steatosis in a fructose-induced NAFLD model, indicating embryonic amoxicillin exposure increased susceptibility to NAFLD in zebrafish larvae. In summary, this research broadens our understanding of the risks of amoxicillin usage during pregnancy and provides evidence for the impact of embryonic amoxicillin exposure on disease susceptibility in offspring.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra , Amoxicilina/metabolismo , Larva , Suscetibilidade a Doenças/metabolismo , Fígado/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474271

RESUMO

Chronic social isolation (CSIS) generates two stress-related phenotypes: resilience and susceptibility. However, the molecular mechanisms underlying CSIS resilience remain unclear. We identified altered proteome components and biochemical pathways and processes in the prefrontal cortex cytosolic fraction in CSIS-resilient rats compared to CSIS-susceptible and control rats using liquid chromatography coupled with tandem mass spectrometry followed by label-free quantification and STRING bioinformatics. A sucrose preference test was performed to distinguish rat phenotypes. Potential predictive proteins discriminating between the CSIS-resilient and CSIS-susceptible groups were identified using machine learning (ML) algorithms: support vector machine-based sequential feature selection and random forest-based feature importance scores. Predominantly, decreased levels of some glycolytic enzymes, G protein-coupled receptor proteins, the Ras subfamily of GTPases proteins, and antioxidant proteins were found in the CSIS-resilient vs. CSIS-susceptible groups. Altered levels of Gapdh, microtubular, cytoskeletal, and calcium-binding proteins were identified between the two phenotypes. Increased levels of proteins involved in GABA synthesis, the proteasome system, nitrogen metabolism, and chaperone-mediated protein folding were identified. Predictive proteins make CSIS-resilient vs. CSIS-susceptible groups linearly separable, whereby a 100% validation accuracy was achieved by ML models. The overall ratio of significantly up- and downregulated cytosolic proteins suggests adaptive cellular alterations as part of the stress-coping process specific for the CSIS-resilient phenotype.


Assuntos
Proteoma , Resiliência Psicológica , Ratos , Animais , Proteoma/metabolismo , Córtex Pré-Frontal/metabolismo , Isolamento Social , Fenótipo , Suscetibilidade a Doenças/metabolismo , Estresse Psicológico/metabolismo
6.
Neurobiol Dis ; 193: 106457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423191

RESUMO

Epilepsy is a brain disorder affecting up to 1 in 26 individuals. Despite its clinical importance, the molecular mechanisms of epileptogenesis are still far from clarified. Our previous study showed that disruption of Clock in excitatory neurons alters cortical circuits and leads to generation of focal epilepsy. In this study, a GAD-Cre;Clockflox/flox mouse line with conditional Clock gene knockout in inhibitory neurons was established. We observed that seizure latency was prolonged, the severity and mortality of pilocarpine-induced seizure were significantly reduced, and memory was improved in GAD-Cre;Clockflox/flox mice. We hypothesize that mice with CLOCK knockout in inhibitory neurons have increased threshold for seizure, opposite from mice with CLOCK knockout in excitatory neurons. Further investigation showed Clock knockout in inhibitory neurons upregulated the basal protein level of ARC, a synaptic plasticity-associated immediate-early gene product, likely through the BDNF-ERK pathway. Altered basal levels of ARC may play an important role in epileptogenesis after Clock deletion in inhibitory neurons. Although sEPSCs and intrinsic properties of layer 5 pyramidal neurons in the somatosensory cortex exhibit no changes, the spine density increased in apical dendrite of pyramidal neurons in CLOCK knockout group. Our results suggest an underlying mechanism by which the circadian protein CLOCK in inhibitory neurons participates in neuronal activity and regulates the predisposition to epilepsy.


Assuntos
Epilepsia , Animais , Camundongos , Ansiedade , Suscetibilidade a Doenças/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Convulsões/metabolismo
7.
Neuroscience ; 540: 87-102, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38220126

RESUMO

While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.


Assuntos
Epigênese Genética , Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Memória/fisiologia , Hipocampo/metabolismo , Memória de Longo Prazo/fisiologia , Rememoração Mental , Suscetibilidade a Doenças/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo
8.
PeerJ ; 11: e16052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842051

RESUMO

Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.


Assuntos
Lipopolissacarídeos , Macrófagos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Hipóxia/genética , Monócitos , Suscetibilidade a Doenças/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
9.
Aging Cell ; 22(10): e13970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37622525

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with α-synuclein aggregation and dopaminergic neuron loss in the midbrain. There is evidence that psychological stress promotes PD progression by enhancing glucocorticoids-related oxidative damage, however, the mechanisms involved are unknown. The present study demonstrated that plasma membrane phospholipid peroxides, as determined by phospholipidomics, triggered ferroptosis in dopaminergic neurons, which in turn contributed to stress exacerbated PD-like motor disorder in mice overexpressing mutant human α-synuclein. Using hormonomics, we identified that stress stimulated corticosteroid release and promoted 15-lipoxygenase-1 (ALOX15)-mediated phospholipid peroxidation. ALOX15 was upregulated by α-synuclein overexpression and acted as a fundamental risk factor in the development of chronic stress-induced parkinsonism and neurodegeneration. Further, we demonstrated the mechanism by which corticosteroids activated the PKC pathway and induced phosphatidylethanolamine-binding protein-1 (PEBP1) to form a complex with ALOX15, thereby facilitating ALOX15 to locate on the plasma membrane phospholipids. A natural product isolated from herbs, leonurine, was screened with activities of inhibiting the ALOX15/PEBP1 interaction and thereby attenuating membrane phospholipid peroxidation. Collectively, our findings demonstrate that stress increases the susceptibility of PD by driving membrane lipid peroxidation of dopaminergic neurons and suggest the ALOX15/PEBP1 complex as a potential intervention target.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Suscetibilidade a Doenças/metabolismo , Estresse Psicológico
10.
Plant Biotechnol J ; 21(12): 2490-2506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578146

RESUMO

Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.


Assuntos
Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Escopoletina/metabolismo , Micotoxinas/metabolismo , Suscetibilidade a Doenças/metabolismo , Cumarínicos/metabolismo , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
11.
Biochem Biophys Res Commun ; 674: 83-89, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37413709

RESUMO

The transcriptional regulators that drive regulatory T (Treg) cell development and function remain partially understood. Helios (Ikzf2) and Eos (Ikzf4) are closely-related members of the Ikaros family of transcription factors. They are highly expressed in CD4+ Treg cells and functionally important for Treg cell biology, as mice deficient for either Helios or Eos are susceptible to autoimmune diseases. However, it remains unknown if these factors exhibit specific or partially redundant functions in Treg cells. Here we show that mice with germline deletions of both Ikzf2 and Ikzf4 are not very different from animals with single Ikzf2 or Ikzf4 deletions. Double knockout Treg cells differentiate normally, and efficiently suppress effector T cell proliferation in vitro. Both Helios and Eos are required for optimal Foxp3 protein expression. Surprisingly, Helios and Eos regulate different, largely non-overlapping, sets of genes. Only Helios is required for proper Treg cell aging, as Helios deficiency results in reduced Treg cell frequencies in the spleen of older animals. These results indicate that Helios and Eos are required for distinct aspects of Treg cell function.


Assuntos
Fator de Transcrição Ikaros , Linfócitos T Reguladores , Animais , Camundongos , Doenças Autoimunes/genética , Suscetibilidade a Doenças/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores de Transcrição/metabolismo
12.
J Hum Genet ; 68(9): 635-642, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37308566

RESUMO

Otosclerosis (OTSC) is a focal and diffuse bone disorder of the human middle ear characterized by abnormal bone growth and deposition at the stapes' footplate. This hinders the transmission of acoustic waves to the inner ear leading to subsequent conductive hearing loss. The plausible convections for the disease are genetic and environmental factors with yet an unraveled root cause. Recently, exome sequencing of European individuals with OTSC revealed rare pathogenic variants in the Serpin Peptidase Inhibitor, Clade F (SERPINF1) gene. Here, we sought to investigate the causal variants of SERPINF1 in the Indian population. The gene and protein expression was also evaluated in otosclerotic stapes to ameliorate our understanding of the potential effect of this gene in OTSC. A total of 230 OTSC patients and 230 healthy controls were genotyped by single-strand conformational polymorphism and Sanger sequencing methods. By comparing the case controls, we identified five rare variants (c.72 C > T, c.151 G > A, c.242 C > G, c.823 A > T, and c.826 T > A) only in patients. Four variants c.390 T > C (p = 0.048), c.440-39 C > T (p = 0.007), c.643 + 9 G > A (p = 0.035), and c.643 + 82 T > C (p = 0.005) were found to be significantly associated with the disease. Down-regulation of SERPINF1 transcript level in otosclerotic stapes was quantified by qRT-PCR, ddPCR and further validated by in situ hybridization. Similarly, reduced protein expression was observed by immunohistochemistry and immunofluorescence in otosclerotic stapes that corroborate with immunoblotting of patients' plasma samples. Our findings identified that SERPINF1 variants are associated with the disease. Furthermore, reduced expression of SERPINF1 in otosclerotic stapes might contribute to OTSC pathophysiology.


Assuntos
Otosclerose , Humanos , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Genótipo , Otosclerose/genética , Otosclerose/patologia , Reação em Cadeia da Polimerase , Estribo/metabolismo , Estribo/patologia
13.
Front Immunol ; 14: 1111072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187743

RESUMO

Leishmaniases are a group of diseases with different clinical manifestations. Macrophage-Leishmania interactions are central to the course of the infection. The outcome of the disease depends not only on the pathogenicity and virulence of the parasite, but also on the activation state, the genetic background, and the underlying complex interaction networks operative in the host macrophages. Mouse models, with mice strains having contrasting behavior in response to parasite infection, have been very helpful in exploring the mechanisms underlying differences in disease progression. We here analyzed previously generated dynamic transcriptome data obtained from Leishmania major (L. major) infected bone marrow derived macrophages (BMdMs) from resistant and susceptible mouse. We first identified differentially expressed genes (DEGs) between the M-CSF differentiated macrophages derived from the two hosts, and found a differential basal transcriptome profile independent of Leishmania infection. These host signatures, in which 75% of the genes are directly or indirectly related to the immune system, may account for the differences in the immune response to infection between the two strains. To gain further insights into the underlying biological processes induced by L. major infection driven by the M-CSF DEGs, we mapped the time-resolved expression profiles onto a large protein-protein interaction (PPI) network and performed network propagation to identify modules of interacting proteins that agglomerate infection response signals for each strain. This analysis revealed profound differences in the resulting responses networks related to immune signaling and metabolism that were validated by qRT-PCR time series experiments leading to plausible and provable hypotheses for the differences in disease pathophysiology. In summary, we demonstrate that the host's gene expression background determines to a large degree its response to L. major infection, and that the gene expression analysis combined with network propagation is an effective approach to help identifying dynamically altered mouse strain-specific networks that hold mechanistic information about these contrasting responses to infection.


Assuntos
Leishmania major , Leishmaniose , Animais , Camundongos , Leishmania major/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos , Transcriptoma , Suscetibilidade a Doenças/metabolismo
14.
J Virol ; 97(3): e0180322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779757

RESUMO

The isolation of the Koala retrovirus-like virus from Australian megabats and the identification of endogenous retroviruses in the bat genome have raised questions on bat susceptibility to retroviruses in general. To answer this, we studied the susceptibility of 12 cell lines from 11 bat species to four well-studied retroviruses (human and simian immunodeficiency viruses [HIV and SIV] and murine leukemia viruses [B- and N-MLV]). Systematic comparison of retroviral susceptibility among bats revealed that megabat cell lines were overall less susceptible to the four retroviruses than microbat cell lines, particularly to HIV-1 infection, whereas lineage-specific differences were observed for MLV susceptibility. Quantitative PCR of reverse transcription (RT) products, infection in heterokaryon cells, and point mutation analysis of the capsid (CA) revealed that (i) HIV-1 and MLV replication were blocked at the nuclear transport of the pre-integration complexes and before and/or during RT, respectively, and (ii) the observed lineage-specific restriction can be attributed to a dominant cellular factor constrained by specific positions in CA. Investigation of bat homologs of the three previously reported post-entry restriction factors constrained by the same residues in CA, tripartite motif-protein 5α (TRIM5α), myxovirus resistance 2/B (Mx2/MxB), and carboxy terminus-truncated cleavage and polyadenylation factor 6 (CPSF6-358), demonstrated poor anti-HIV-1 activity in megabat cells, whereas megabat TRIM5α restricted MLV infection, suggesting that the major known CA-dependent restriction factors were not dominant in the observed lineage-specific susceptibility to HIV-1 in bat cells. Therefore, HIV-1 susceptibility of megabat cells may be determined in a manner distinct from that of primate cells. IMPORTANCE Recent studies have demonstrated the circulation of gammaretroviruses among megabats in Australia and the bats' resistance to HIV-1 infection; however, the origins of these viruses in megabats and the contribution of bats to retrovirus spread to other mammalian species remains unclear. To determine the intrinsic susceptibility of bat cells to HIV-1 infection, we investigated 12 cell lines isolated from 11 bat species. We report that lineage-specific retrovirus restriction in the bat cell lines can be attributed to CA-dependent factors. However, in the megabat cell lines examined, factors known to bind capsid and block infection in primate cell culture, including homologs of TRIM5α, Mx2/MxB, and CPSF6, failed to exhibit significant anti-HIV-1 activities. These results suggested that the HIV-1 susceptibility of megabat cells occurs in a manner distinct from that of primate cells, where cellular factors, other than major known CA-dependent restriction factors, with lineage-specific functions could recognize retroviral proteins in megabats.


Assuntos
Capsídeo , Quirópteros , Suscetibilidade a Doenças , Retroviridae , Animais , Humanos , Camundongos , Austrália , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Quirópteros/virologia , Retroviridae/classificação , Retroviridae/metabolismo , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/virologia , Linhagem Celular , Especificidade da Espécie , Fatores de Restrição Antivirais/metabolismo
15.
Front Immunol ; 13: 1017401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300112

RESUMO

Kawasaki disease is a systemic vasculitis, especially of the coronary arteries, affecting children. Despite extensive research, much is still unknown about the principal driver behind the amplified inflammatory response. We propose mitochondria may play a critical role. Mitochondria serve as a central hub, influencing energy generation, cell proliferation, and bioenergetics. Regulation of these biological processes, however, comes at a price. Release of mitochondrial DNA into the cytoplasm acts as damage-associated molecular patterns, initiating the development of inflammation. As a source of reactive oxygen species, they facilitate activation of the NLRP3 inflammasome. Kawasaki disease involves many of these inflammatory pathways. Progressive mitochondrial dysfunction alters the activity of immune cells and may play a role in the pathogenesis of Kawasaki disease. Because they contain their own genome, mitochondria are susceptible to mutation which can propagate their dysfunction and immunostimulatory potential. Population-specific variants in mitochondrial DNA have also been linked to racial disparities in disease risk and treatment response. Our objective is to critically examine the current literature of mitochondria's role in coordinating proinflammatory signaling pathways, focusing on potential mitochondrial dysfunction in Kawasaki disease. No association between impaired mitochondrial function and Kawasaki disease exists, but we suggest a relationship between the two. We hypothesize a framework of mitochondrial determinants that may contribute to ethnic/racial disparities in the progression of Kawasaki disease.


Assuntos
Inflamassomos , Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Linfonodos Mucocutâneos/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Suscetibilidade a Doenças/metabolismo
16.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078063

RESUMO

Mitochondrial (mt) DNA can be classified into haplogroups, which represent populations with different geographic origins. Individuals of maternal African backgrounds (L haplogroup) are more prone to develop specific diseases compared those with maternal European-H haplogroups. Using a cybrid model, effects of amyloid-ß (Amyß), sub-lethal ultraviolet (UV) radiation, and 5-Aza-2'-deoxycytidine (5-aza-dC), a methylation inhibitor, were investigated. Amyß treatment decreased cell metabolism and increased levels of reactive oxygen species in European-H and African-L cybrids, but lower mitochondrial membrane potential (ΔΨM) was found only in African-L cybrids. Sub-lethal UV radiation induced higher expression levels of CFH, EFEMP1, BBC3, and BCL2L13 in European-H cybrids compared to African-L cybrids. With respect to epigenetic status, the African-L cybrids had (a) 4.7-fold higher total global methylation levels (p = 0.005); (b) lower expression patterns for DNMT3B; and (c) elevated levels for HIST1H3F. The European-H and African-L cybrids showed different transcription levels for CFH, EFEMP1, CXCL1, CXCL8, USP25, and VEGF after treatment with 5-aza-dC. In conclusion, compared to European-H haplogroup cybrids, the African-L cybrids have different (i) responses to exogenous stressors (Amyß and UV radiation), (ii) epigenetic status, and (iii) modulation profiles of methylation-mediated downstream complement, inflammation, and angiogenesis genes, commonly associated with various human diseases.


Assuntos
DNA Mitocondrial , Polimorfismo de Nucleotídeo Único , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Suscetibilidade a Doenças/metabolismo , Epigênese Genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ubiquitina Tiolesterase/metabolismo
17.
Nat Plants ; 8(7): 802-816, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35851623

RESUMO

Plants use cell-surface immune receptors to recognize pathogen-specific patterns to evoke basal immunity. ENHANCED DISEASE SUSCEPTIBILITY (EDS1) is known to be crucial for plant basal immunity, whereas its activation mechanism by pattern recognition remains enigmatic. Here, we show that the fungal pattern chitin induced the plasma membrane-anchored receptor-like cytoplasmic kinase PBS1-LIKE 19 (PBL19) to undergo nuclear translocation in Arabidopsis. The palmitoylation-deficient PBL19C3A variant constantly resided in the nucleus, triggering transcriptional self-amplification mainly through WRKY8 and EDS1-dependent constitutive immunity. Unexpectedly, the metacaspase-cleaved PBL19 lacking the N-terminal nuclear localization sequence specifically interacted with and phosphorylated EDS1 in the cytoplasm. Phosphodeficient EDS1 attenuated PBL19C3A-induced constitutive immunity, while phosphomimetic EDS1 complemented the loss of PBL19 for fungal resistance. Collectively, these findings reveal a compelling model wherein the plasma membrane, nuclear and cytoplasmic pools of PBL19 temporally coordinate distinct roles of immune signal receiver, amplifier and effector to boost plant antifungal immunity via EDS1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/metabolismo , Receptores de Superfície Celular/metabolismo
18.
Sci Rep ; 12(1): 11855, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879338

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains to spread worldwide. COVID-19 is characterized by the striking high mortality in elderly; however, its mechanistic insights remain unclear. Systemic thrombosis has been highlighted in the pathogenesis of COVID-19, and lung microangiopathy in association with endothelial cells (ECs) injury has been reported by post-mortem analysis of the lungs. Here, we experimentally investigated the SARS-CoV-2 infection in cultured human ECs, and performed a comparative analysis for post-infection molecular events using early passage and replicative senescent ECs. We found that; (1) SARS-CoV-2 infects ECs but does not replicate and disappears in 72 hours without causing severe cell damage, (2) Senescent ECs are highly susceptible to SARS-CoV-2 infection, (3) SARS-CoV-2 infection alters various genes expression, which could cause EC dysfunctions, (4) More genes expression is affected in senescent ECs by SARS-CoV-2 infection than in early passage ECs, which might causes further exacerbated dysfunction in senescent ECs. These data suggest that sustained EC dysfunctions due to SARS-CoV-2 infection may contribute to the microangiopathy in the lungs, leading to deteriorated inflammation and thrombosis in COVID-19. Our data also suggest a possible causative role of EC senescence in the aggravated disease in elder COVID-19 patients.


Assuntos
COVID-19 , Trombose , Idoso , Suscetibilidade a Doenças/metabolismo , Células Endoteliais/metabolismo , Humanos , SARS-CoV-2 , Trombose/patologia
19.
Diabetes ; 71(9): 1962-1978, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771990

RESUMO

Progressive dysfunction and failure of insulin-releasing ß-cells are a hallmark of type 2 diabetes (T2D). To study mechanisms of ß-cell loss in T2D, we performed islet single-cell RNA sequencing of two obese mouse strains differing in their diabetes susceptibility. With mice on a control diet, we identified six ß-cell clusters with similar abundance in both strains. However, after feeding of a diabetogenic diet for 2 days, ß-cell cluster composition markedly differed between strains. Islets of diabetes-resistant mice developed into a protective ß-cell cluster (Beta4), whereas those of diabetes-prone mice progressed toward stress-related clusters with a strikingly different expression pattern. Interestingly, the protective cluster showed indications of reduced ß-cell identity, such as downregulation of GLUT2, GLP1R, and MafA, and in vitro knockdown of GLUT2 in ß-cells-mimicking its phenotype-decreased stress response and apoptosis. This might explain enhanced ß-cell survival of diabetes-resistant islets. In contrast, ß-cells of diabetes-prone mice responded with expression changes indicating metabolic pressure and endoplasmic reticulum stress, presumably leading to later ß-cell loss. In conclusion, failure of diabetes-prone mice to adapt gene expression toward a more dedifferentiated state in response to rising blood glucose levels leads to ß-cell failure and diabetes development.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Apoptose/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Suscetibilidade a Doenças/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Obesos
20.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682784

RESUMO

The C57BL/6.NOD-Aec1Aec2 mouse has been extensively studied to define the underlying cellular and molecular basis for the onset and development of Sjögren's syndrome (SS), a human systemic autoimmune disease characterized clinically as the loss of normal lacrimal and salivary gland functions leading respectively to dry eye and dry mouth pathologies. While an overwhelming majority of SS studies in both humans and rodent models have long focused primarily on pathophysiological events and the potential role of T lymphocytes in these events, recent studies in our murine models have indicated that marginal zone B (MZB) lymphocytes are critical for both development and onset of SS disease. Although migration and function of MZB cells are difficult to study in vivo and in vitro, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to track early cellular and molecular events in these exocrine glands of C57BL/6.NOD-Aec1Aec2 mice. In the present report, genome-wide transcriptome analyses of lacrimal glands indicate that genes and gene-sets temporally upregulated during early onset of disease define the Notch2/NF-kß14 and Type1 interferon signal transduction pathways, as well as identify chemokines, especially Cxcl13, and Rho-GTPases, including DOCK molecules, in the cellular migration of immune cells to the lacrimal glands. We discuss how the current results compare with our recently published salivary gland data obtained from similar studies carried out in our C57BL/6.NOD-Aec1Aec2 mice, pointing out both similarities and differences in the etiopathogeneses underlying the autoimmune response within the two glands. Overall, this study uses the power of transcriptomic analyses to identify temporal molecular bioprocesses activated during the preclinical covert pathogenic stage(s) of SS disease and how these findings may impact future intervention therapies as the disease within the two exocrine glands may not be identical.


Assuntos
Aparelho Lacrimal , Síndrome de Sjogren , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças/metabolismo , Perfilação da Expressão Gênica/métodos , Aparelho Lacrimal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , RNA/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...